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The system of boundary layer equations of unsteady axisymmetric flow of incom-
pressible fluid in the presence of blowing or suction through the boundary surface
of a body is considered, Proof is given of the existence and uniqueness of a time-
periodic solution of such system in the neighborhood of the critical point (forced
oscillations), when the external flow is periodic with respect to time and the fun-
ctions defining the body shape and the blowing or suction conditions are known,
This problem was considered in detail in [1] for specific initial conditions (as a
whole dependent on #) , where, in particular, data on the stability of such flows
are presented,

Let us consider the system of equations
Uy -+ Uy + DUy = — Py -+ Vilyy, py=0, (ru)y + (rv), =0 (1)

for theregion D {—oo << t << -+ o0, 0 <z << X, 0 <<y < o0} withboundary
conditions
Ulemg =0, Ulymg=0, Vlymo=10,(t,2), u—>U(,) for y—co (2)

u(@+ T, x, yy=ul(t, r, ¥)
where # and v are velocity components parallel and normal to the wall of the body ;
U (¢, z) is the longitudinal component of the external flow velocity, with U (¢, 0) =
0, and U (¢, 2) > Ofor z > 0; —p, = U; + UUy, v is the viscosity coefficient
(for density p = 1); r (¢, x) is the distance of point x on the body surface from the
latter axis of symmetry; and 7 (¢, 0) = O and r (¢, ) > 0 for £ >> (. We assume
that in the region D, U, >0, r, > 0and p, /U << 0, Let U, r, p and v, be
a specified periodic functions with respect to ¢ of period 7.
To analyze the problem (1), (2) we introduce new independent variables
_u(tzy) 3

v=t, t=a on="pEa )
We then obtain for function w = u, / U inregion Q {—oc << T << 4020, 0 <
E << X, 0<{mn << 1}the equation

VUt — we — NUwe 4 Aw, + Buw =0 (%)
with boundary and periodicity conditions
W lp=y = 0, (viwwg — 0510 + C) Ja=p = 0 )

w(t -+ T,En)=w(T,§m)

where
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U I3 U

A=(P=nU+ =5, B=n(n L —v)- 3t
P, .U,
C=—g=U.-3

The unknown function u (¢, x, ¥) is defined by the equalities
:2 ds . u (ts x, I;’)
Y\ " Tao
0

and function v (£, x, ¥) is determined by the first equation of system (1) [1].

Let us assume that 4, B, C and v, and their derivatives with respect to ¢ and Z
are bounded, Using the method of straight lines [1], we shall prove on suitable assump-
tions the existence and the uniqueness of the solution of problem (4), (5) and obtain, as
the corollafy, the related theorems on the periodicity with respect to ¢ of solutions of
the input problem (1), (2).

Let f™ "% (n) = f (mh,, khy, v) for any function f (t, §, n), 4, and /i, = const
> 0. We substitute for Eq, (4) with conditions (5) the following system of differential

equations: m,k m-1,k
. m,k wt —w
Lm,k(ZL’)EV(ZL ) Wy [
ok Wk Mkl ;omk JKomk
— (U™ ) P AR - B =0 (6)

m=1,....,N;, N=T/h; k=0,1,...,0 l=1X/h]: 01
U™ =0, pwy=0, uy=-const>0, (k>1), v=const, 071

(where /%, is such that 1" / A, is an integer) with boundary conditions
. & mk K
W) =0, Ami (@) = (™ Wl — o™ CM ) e =0 (T)

and condition of periodicity

Nk

n)=w""(n) (8)
we denote by W;, E; and ¢ positive constants independent of h, and h,.
Lemma 1, The system ot differential equations (6) with conditions (7) and (8) has

the solution w™k () (0 << m < N, 0 <k <), which is continuous for () <

N<:1and has all derivatives for O < 1) < 1. The estimate

My —) < awmh )y < Mo (L—1) s (9)

5= t/—— Inw(l —n) for khy<CX, ki $ho=const >0, w=coust, w&(0,n)

wO,h’ (

where p° is a certain constant defined by the input data of problem (1), (2), is valid
for this solution,
Proof, We derive the solution of system (6) with conditions (7) and (8) as the limit
of solution of system
LE G E= pre [‘m,); () =10 for ¢— o (10)

m, 1N

m=1,2, ..., N, k=0.1,....0L >0, 0 <1

with conditions (7) and (8), The proof of Lemma 1 is to a great extent similar to that
of Lemmas 3 and 7 in {17,
Let us examine functions
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Vi, m)y= Mz (L —n) exp (—ak)
Ve & M= M (1 —nio (M a, M,= const > 0).

As shown in [1], constants My, o, M, and pu° can be chosen so as to satisfy the follow-
ing inequalities;

LE x>0, R (V)>0, LE ((P)SO, Ay, () <0 (11)

Note that M, M, « and p° are independent of ¢, h, and k,.

Proof of the existence of solution of the problem defined by (10), (7) and (8) is based
on the Schauder theorem [2], Let S be a set of bounded vector functions 0 == (89, 61, ,,
8%) such that !

Vi(hhe, M) SO M) Vol M), k=01,..., 5 [ =[X/hs] (12)

Let us examine the shift operator R which associates the vector function 8 to these
vector functions, w¥ = (¥ 0, . . w4, where w™ ¥ = ™ ¥ for m= N = T/h, and
w™ * s the solution of system (10) with boundary conditions (7) and initial condition

wh = o¥ O<E<Y (13)

The operator R according to Lemma 7 in {1], is determinate on set §. Functions

w™ ® (n) are continuous for 0 < 1 < 1, have finite derivatives for 0 < 1 < 1.and for
certain positive constants E; and E, independent of ¢ . 4, and & the estimate

Er(t—m) <uNF(m) S E(1—m)3
is valid,
The operator # maps § into itself, This statement is implied by the inequalities (11)
and (12), since the estimate

ViR <w ™ T o) {14)

is valid for the solution of the problem defined by (10), (7) and (13), -while “V;V k=
VY #(i==1, 2), Proof of the estimate (14) is obtained by the principle of maximum (see
Lemma 3 in [1]).

The set RS is compact in §, since the first and second derivatives »™ ¥ (1)) are bound-
ed by a constant which depends on the input data of problem (1), {2}, ¢, %, %, and on
functions ¥, and V,. This follows directly from the first-order equations derived from
system (10) which are satisfied by »]"* and from the estimate of wih k for n=0, The
latter follows from the boundary condition (7) (we assume here that ¢ and k; are fixed,
and the estimate 7" k depends on € and &;); the estimate is uniform with respect to
e for 0 <Cn < {1 — 8)where 8 > 0. The derivative «”: ¥ is defined by (10),

The continuity of operator R is implied by the equations and boundary conditions
which are satisfied by various solutions of the problem (10), (7), {(13) corresponding to
various 0, as well as by the estimates of these solutions and their derivatives,

We thug conclude that the absolutely continuous shift operator R maps the bounded
closed convex set § of the space of bounded functions into itself, Hence, by the Schau-
der theorem [2] there exists a stationary point §, == (O, 8,' . . i) which is the image
of B, i,e., BRUs= 8,. This equality implies that 4, < RS, hence U404 18 bounded,
The sought periodic solution w™ ¥ () of problem (10), (7) is derived as the solution
of system (10) with boundary conditions (7) and the initial condition w" ¥ == (4%, Differ-

entiating Eqs, (10) with respect to v, we find that " F (i : 1) and, consequently,
g pe 1 i Y
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w%k  are bounded, Repeating this process, we come to the conclusion that w™: ¥

m
argninnﬁnitely differentiable functions of m, and that the derivatives a,7v™ * (j = 1,2, ..)
are uniformly bounded with respect to & along the segment 0 <7 << (1 -- 8), where 6
is an arbitrary positive number,

Let us now find the solutlon of problem (6) — (8), By the Arzela theorem it is possible
to select from the set w(" ¥1of solutions of the problem (10), (7), (8) a sequence w’" &
which is uniformly convergent together with its derivatives along any segment 0 <C n
(1 — &) for e, — 0. Since My, M,, o and p° have been assumed independent of ¢ , Iy

and h,, the estimates
Ms (1 —n) e ™k ) <Ma(1 —m)s

which are uniform with respect to &, and 4, .are valid for functions »™ * | It follows
from these inequalities w™ ¥ (1) = 0 and w™ ¥ M) are continuous for 0L < 1, and
forn < 1; w™* () satisfy system (6) and conditions (7) and (8), Lemma 1 is proved,

Additional assumptions with respect to function U (¢, z) make it possible to improve
the lower accuracy limit of w™s#% (v)) ,

Lemma 2, Let (U, /U)lg__o = 0. Thenfor 0<<n<<1, 0<Thh,<<X and
0 p<Cp® (W< 1/V e)the estimate

wmk (M) > My (1 —m)s (15)

is valid for the solution of problem (6) — (8),

Proof, Let Vi = Mg(1 —n)se *#h:. Then

Lm,k (‘3) — V;"’k{-— V11[62€_21k‘"2 <__;_ + [:}2‘_> L (1 4m) U;n’k <1 _ _;‘E_z_> _
— <K‘—~)m’k 4 (r Y _vy )m’k AU ) e >0
22\ U Yor x C
for n< 1 and for reasonably great a and reasonably small Mg and p°, since U, >0,
[ (rxU) [ — Uy <aU and 62 <2 (0) =0 for b — 0; 0< A’ < ha. Let. 7“1111,1( (w) E}‘m,h
() [ w™ ¥ (0). We have

\ Cm.k El

/
1 —akhy - | O8N S
My (Ve) = [_vMﬁe sll—gm ) —op "+ = 0

provided M; is reasonably small since C >0
Let us consider functions y™* = (V3" ¥ w™¥) ¢Bkh: | we shall prove that y™ b 0.

For ¥™% we obtain the inequalities

an ko mk Y™ —ym bk
—Bkhy . m, R —
'Lm,k (Vs) — Lm,k ()] e7PH2 =y (" ")2 Yo "

k-1

e-—ﬁhg -+ ‘_,1 yﬂ %

m’

m,k
_(nUm,k+”kh2Y) Y h‘y

Um,k U » )
+ [Bm K _L ") (wm,k + V’In k) V3.,m (n ) + h]_-{ (1 e kﬁhz) ym,k > 0
- 2

0<n<t, 1<m<N, 0<k<{l, W=0, U™'=0, 01! (16)
Cm,k h}
=0
ym,k (H=0, YO = yV=" (17)

Weset p,>1for £>1 and 3= hs? with i, sufficiently small to make the



Solution of a system of bouadary layer egquations 4317

coefficient at y™* in (16) nonpositive, Let M, K and 1o be such that y™ME ) >
y™E M), i.e., yM K (1) = max y™F (n). Let us assume that y™-X (9) > 0. Since y** =
y™¥, we can assume M >1 and y™X (ny) > yM-LK (qy), Since [C™F jw™FYE
(0)>O. it follows from (17) that My==1 and N, %= 0, Hence 0 <M, < 1 and the inequalities
K (1) =0, y3LK (n)) < Oare valid,

S1nce the coefficient at ¥™° which is equal v (w™° + Vi»%) V%0, is nonpositive, it
follows from inequality (16) that K <=0 and y™X (o) >y MKt (o). From (16) we then
obtain

MK MK | yM,K yME
B +v(w + Vg )stm n

ha

>0

N="y

by -
T o= ) (1—e B"')] y™K

2

This inequality is, however, impossible, since the coefficient at yM.X by virtue of sel-
ecting nonpositive py, 3 and k;, Hence y™* (1) <0 and the estimate

w™E ) > Me(1 — ) ce™ ™ > Ms (1 —n)s,  (Ms < Met™5)
is valid, Lemma 2 is proved,
Let us determine w™¥ for any integral m: wVP+eF = w2k (0 —1). In
particular, w1k — -1k  Note that the periodicity I of the coeff1c1ents of system (1)
and conditions (2) imply that

Lpigk (W) = Lok (w) =0, Anpigr (W) =gk (w) = 0

We introduce the following notation:
m,k m, k-1 mk __ m-Lk

m,k w —w m,k m,k mk __ W
=Ty FEa, 0= i

Let us establish the uniform with respect to k&; (i = 1,2) estimates for r™¥*, z™#
and P™*, and write the equations which satisfy these, Differentiating (6) with respect
to 1, for ™% we obtain

B -1,k
Pr k(z) =v (w"‘-")2 i ekt el
z"' k-1 K _m.k k k
— (U™ ) £ + AT (B AT g -
+ 2vu™ "zms*z U™ pm k4 gmkym kg (18)

<m<N, 0k, U""°=0, mo=0, p,>0 (E>1), 0<y<1

with conditions

20 = gN. (19)

Subtracting from the equation for w™* in (6) that for w™*#1 and dividing the differ

ence by h,, we obtain p P meLk .
m, - m, £-1
R, i (ry=v (@™ Fprin " — R Pe—— (U + Mr1h) X
m,k__ m, k-1
><r h: +Amk +Bmkmk_|_
wm, K + w™ k-1

+ [o™ k=L 4 (qU™ * 4 Wy_ghy) rme k-1 A™ k-1,m, k-1 __

(wm, k—l)z

_ Bm, k—lwm’ k-ll rm, K

A e e Y
—1In = P

Joms
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+ ‘_2( Am, k- 1) m, k-1 + (Bm k Bm, k—l) wm, k-1 = O (20)
I<<m<N, 1<k, mO—o o=0, mp>pmy, 0<<r<1

From conditions (7) and (8) we similarly obtain

m, k
m. k m, k c™
r 1 1 = - T ™ k
(1) =0, () == [ — —F e

m, k m, k-1 k

v —_— m m, k-1

0 0 C 4 '—C

_ + =0 Pk Nk
hs how™ K1 n=0 ’ i 20

Functions r™:® are undetermined (we can, however, assume that w™ ™1 = w™? andg,
consequently, ™% = (). Similarly the analysis of equalities

e Ly (0) = Loy ()] = 0, = (Mo, 1 (0) — 2y 5 )] =

yields k ‘
T i (0) = v (W™ ¥)2pT ¥ — P _h.pm Lk
’ 1
myk _ m, k-1 '
— (U™ ) S o AT BT R

my k -1, k
L w + w™ ! [p‘m~1, k _}__ (nUm—l' k + “’hh;) rm-1, ko Am_]" kzm—l, k_~

i (wm-1, K)-z . )
myk_ pma,
—1 u h;U rm-1, k -
+_2_(Am,k ATy gL E ; (B™F — B™ U F) -1k = () (22)

1

ISmEN, 0kt U™%=0, po=0, p >0 (k>1), 0<r<!

_ Bm—l, kwm—l, k] Pm’ k

with conditions

m, k(4 ~ : m, k o™ § k
p ! (1) = 0, l my K (p) = [V‘Oﬂ ' - wm, h‘wﬁ’l -1, k pm, -
ok ym-Lk c™ k cm-1.k
0 0 -
. — 0,k __ N,k
- L i 0, p*F=0p (23)

(0% ¥ are determined, since w=h ¥ == wN-1¥), We assume henceforth that (U,/ U) ;=
0, Uy lz=o = 0 and Uy [e—q = 0. From (22) and (23) we then find that 0™ % must
satisfy equations ,0

My 0 __ ,m-1,0
T, o(0) = (0™ o — LS gy
RUSEY m-1, 0
R (e — AT e o0 = (24)
w » U2
and conditions (25)
Al Cm’ 0
po1) =0, Ty, o(0) = [VP:?'O - me’ 0] . =0, ph0=pN.0

Function p™° () == O satisfies Egs, (24) and conditions (25), Let us consider the sol-
ution 1™ ¥ of problem (6) — (8) in which p™% = 0,

Lemma 3, Let v, [gme << 0. Then for 0 <M < 1, M, and My = const >
0 the estimate
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— Mi5<l2™ < — M5 (26)

is valid for z™® = w,™?°
Proof, Since p™ %= ¢ and w™%are independent of m,Lemmas 4 and 5 in [1], from
which follows the estimate (26), are valid for w™ ® () = w° (y) . Lemma 3 is proved,
Lemma 4, Let

vy < EiE, v > — E, | U/ U|<<EE
(U Uy | < E, Uy<EE, |(nUrt—U)|<Ew (27)

It is then possible to find such a positive X, which depends on the input data of problem
(1), (2), that for 0 <C khy << X, and 0 << mhy << T the estimates

— Mg <wit < — M3 (28)
mk _ , mk—1
<Myl =) (29)
2 m,k — wm—l,k o
—Mp(l—m)s<< n < My5khy (1 —m)o (30)
|w™F ™ < M, W™ W< — M (31)

where M are independent of %, and A, are valid for the solution of problem (6) —(8).
Proof, This is carried out by the method of induction with respect to &. For k= 0
the inequalities (28) — (30) are valid and r™ © is undetermined (it will be shown in the
proof that the value of 7™ ° is immaterial),
Let W™K — M ™F, OTF = — Mo, OMF= — Mus, F™F — — Myw™" and Frofiz
M;skhzwm'k. For proving the lemma it is sufficient to establish the validity of the follow-
ing inequalities:

I rm,k I < \Y‘m,k’ CD;""R < zm,k < (D;n,k’ F’in,k < pm,k < F;",H

In fact, if we select My > MM, Mya> MizMgand Mg > Mg, , the estimates
(28) — (30) are valid, Estimates (31) follow from estimates (9), (15), and (28) — (30) and
Eqs, (6).

The proof of Lemma 4 follows very closely that of Lemma 9 in [1], The important
difference is in that here the induction is only with respect to k. This imposes a very
strict sequence for proving the estimates, First we estimate ™ %, then z™ % and, fin-
ailly, o™ %, Furthermore, it should be noted that Eq, (22) can no longer be considered
as linear, since by the definition of induction p™™" ¥ has no estimate and (@™ " 4
W™ By (™1 F)=2p™ L Ko™ ¥ s a nonlinear term, In the proof of the estimate for p™ "
we specifically use unequal steps with respect to t and §,i.e., Ay 5= k.

Let R, y be the uniform part of operator R,, h From (20) we have

B )+ h, (AT Ly gL h, (B™F - by ymEt g
Note that the coefficient at r™" vanishes when k== 1, Let us prove that for 0 <
U < 1
m h (\{r) _— ]fl \r) NS % I( 'm,h’ . .‘1771,1;—1) ;m,’f—l L (”m,k . Bm,kﬂ) ,L.‘m,k-l [ <0

We select A[jﬁ(J[g’ Mg, Myg) and z' (M2, My, Mg, i) so as to satisfy for ihe <7 2t
and sufficiently smail 7. the following inequalities:
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Um,k . Um,k—l 1 U m,k U m,k-1
Mm_hz—> 7 rx_r_—UJC — rx__r_.—UJc
1 wm,k m, k-1 Am,k Am,k-l
_Z_mem,k (wj;k"-’l)z A E-1,m k-1 > l T m,k-1 +
1 U, \m#* U m, k-1
| () o )
2

(Mg (k— 1) Bo - U™ 4y B — BRI ™ L Q1o (O™ 4 U (E—m) s

These inequalities are possible, as can be seen from the estimates U ™K & Nikhs and
B™# |  Nakha. It can be shown by the calculation of B:n,k (¥) that the required inequ-
ality R:n ¢ ()< 0 is the consequence of (32),
Denoting by y}n’k the uniform part of operator ¥,, ;, we obtain

z,gi,k —_ v;n,k-l gmk _ gmk-1

T}n,k (\]}) +

<

by haw™ 51 (0)
Cm,k Cm,k sup I C_|
mk _ ToE e
< {Mm [vo WMk Mok-1 J +sup| g, | + w1 }

<0

n=0
provided that Mje is sufficiently great and kh, < z2(Es, M2). Let us examine functions
q;"-" = 4-r™k_ ym.k 1t follows from the immediately preceding inequalities and from
Egs, (20) and (21) that
RLxle) >0, 1hi@)>0,  PF)=0
OF =gk, RO

Using these relationships and repeating the reasoning of Lemma 2, we conclude that

qﬁ'k <0, hence the estimate — ymk < rmk <Y™F is valid for kkh: <E! = min (2!, 22),
"The estimate for z™ ¥ is derived in exactly the same manner as that for 2% in Lemma

6 in [1], Omitting the proof, we would only mention that 7, depends on M;s and M,

on the input data of the problem (1), (2) and constants M. and Mg (it is important that

M;, is independent of Mi); here we also impose the condition of smallness of X, :

khz < 8 (JM](), M[Gs ﬂf\z, Eb)‘

We pass to the estimate of p™¥, It can be verified that for khy<(z?(Es, M2) and suffi-
ciently large M1y (M1, M, Ms) the inequalities Ty @) >00<<n<1) and T o (Fi) >
0  are valid, By calculating T, . (F2) and I'y ,(F2) it can be readily shown that
Tpp F2) <0 (O<n<H) and v\ (F2) < 0,when kke < min {2, 2% (M1g, Mis, M)} and
Mg (Mie, Es, Es, Ev) have been made sufficiently great and ki, k2 < ke. This is, in fact,
possible provided that the following inequalities are satisfied:

3 / -1,k
1 (rx—[—]_— Ux)'m.h— {rx_[_/_ _ Ux)m 1, \wm—l,k n

h r r

MagU™ Fyg™ L >

m, k m-1, K :
| LU et
i1
1 wm,k(wm,k+wm-1,k)
m-1,k m-1,k
o Mk T Ry e 2

> Am,k __hAm—l,h' zm—l.k i -hL ( LIJ} )m.k _( (_’{It )m—l,k wm-l,k
1 1




Solution of a system of boundary layer equations 441

(Mgkha + M1a (T]Um—l'k + thZY) _ Bm-—l,k) wm—l,k <
Mo A1 mLE <1 p (C™VE L qUT M) (L —m) s

These inequalities follow from the conditions of this lemma, smoothness of coefficients
and the independence of Mis of M.

Let us examine the remainders ST4¥ = FTW¥ —p™# angd STk — gk _ Tk By def-
inition of induction §7#7* 0 (j=1,2). For ST* we have

Sk __ gm-Lk m,k m—1,k
m.ky2gmk __ Y j w™" 4w ™,k
V( ) S]-rm e h___l 1 + hl (wm—l,k)2 F] +

. o w™E L ymLE
4 A™HESTR [B’l""‘ T P

g™k e
(1T ) oo
2

m,k + wm—l.k

m-1,k __

B’;.n,k —_ Bm,k + w [ﬁ‘;ﬂ,k + (,']Um—'l,k __*_ plkh‘;) rm-l,k —

—

—_ Am—i.kzm—l,k . Bm—1,h‘wm—1,h‘1

k cmk k
VST — — T
[ in wm.hwm 1,k % j =0

Let us prove that for certain relationships between the steps 5, and A; the coefficient
at s *# in the inequality (33) can be made negative. Using the principle of maximum
(see Lemma 2), from (33) and (34) we obtain ST¥ 0 (=1, 2) and, consequently,
the estimates FI™* < p™k FMEf khy < X, = min (z}) and h, and k: are suffici-
ently small, This will serve to prove Lemma 4, Let us specify uy > 1 with k¥ > 1 and
h: so small that

>0, S™F (1) =0, §¥* = sVk (3%)

] ymk 1 1 .
m,k
B1 - (n hs + 2 By ) <0 (35)
2

which is possible, since y <1 and the estimates for ™ LE and ™LX have been al -
ready proved, Furthermore,

wm’k+wm'1’k Lk ”k__l/z wm,k_{_wm-l,k 2 ¢ p‘kﬂl/z
X - — <0 (36)

—aFIT P — . —
(w‘m 1.k )Z h;—'\' wm*l,h hl h;..s(

if pe>2+ (1 + M./Ms)* and hy > k)Y, Lemma 4 is proved,

Theorem 1, Let the propositions of Lemma 4 be satisfied by the 7 -periodic
functions r, U and v, . Then thereexistsin Qy {0 << T, 0 < E << X,
0 << n<1}(X,is a certain number dependent on [/, T and p,) a solution of problem
(4), (5) which has the following properties: w (t, £, m) is continuous in Qy, M,
(1— o < w < M, (1 — )0, w,is continuous with respect to i for 1 << 1,
—My0 S wy << —M 40, wg, w,and ww,, are bounded in 2y and

[wg | << My (1 — m)o,
Wng < —Mys, —Mp (1 — Mo < w, < Myt (1 — )0
Function w satisfies Eq, (4) almost everywhere, and for 0 <C & < X, conditions (5)
are satisfied, The solution of problem (4), (5) which has these properties is unique in
QX: [ QXI.
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The Proof of existence follows the reasoning of Theorems 7 and 11 in {1], We shall
prove the uniqueness of this solution of problem (4), (5). Let #; and w: be two soluti-.
ons of this problem and w, = w1 — w2. For w, we obtain

It Yok 4 Y w . N D .
ww, o —_u':l_‘. —U _1:T + A “sz“ + B_wil + v (w1 w2) wy, _1:*; =0 (37
< —C — ) !n=0 =0, wylpy =0, wylomg =W o 38)

Multiplying Eq, (37) by wye™*% and integrating with respect to Q y (@ = const > U},
we transform certain terms of this equality by integration by parts and obtain

[— vwr (w, )] e *EdvdEdn + —nU -21-)-"-'-: ¢ *Edrdn -
# J11 1 -
sz =X3z )

+ S szl (vwitw, 0 —w o —nUu; -+ Aw, + B w*fe‘*adrdgdn e

9x,
1 1 U U
A ___.. vt 4+ L A vt
+ s [ \'“Lz"(‘r U> 7t
X,
+-v (wl +w) g, wyle*EdvdEdy +
1 1
+ S [ w7 v, Az—wl] w2 *5drds = 0 (39

n==p
We have used here the conditions (38) and the condition U lgmg = 0. We select @ from
the inequality | r,Ur™t — Uy | < af/ and chose X2 so small that

C 1 1

|~ “z‘(vwl —4 5‘*)} r—o ™ (—7::+- )
The left-hand part of equality (39) represents then the sum of integrals of positive func-
tions, which implies that each of these integrals is equal zero, Since in the integral
taken over region Q@ the coefficient at «y*® is negative, wy = 0 almost everywhere,
The continuity of w, in Qy, implies that vy = ( and w; = ws2. Theorem 1 is proved,
We can easily show that Qy, = Qy.

Theorem 2, Let U (t, z) = ax -+ b (¢, z)2% with ¢ = const, >0 and b=
b {t, ) have bounded second-order derivatives, v, << Kz, vgy == — R o, Ty |z=m0 >
0, |(rUr? — U, | < Kyz, and b, v, and r are periodic functions w1th resp-
ect to ¢t of period 7, There exists then a solution u, v of the problem (1), (2) which
isunique in Dy {0 <<t << T, 02 <C Xy, 0<Cy << oo} and has the following
properties: u / U and Uy / U are bounded and continuous in Dy u >0 fory >0
and z > 0; u—>Ufor y— oo, U|gmo=0, u fy=o =0, uij>O for

> 0and uy / U— 0 for y — oo} Uy, Uy, Uyy, u; and U, are bounded and con-
tinuous with respect to y; Uyy / Uy and v are continuous with respect to ¥ and bounded
for finite y, v | y=o == U (¢, ) and u,y, is bounded in Dy , uy and u,; are bound-
ed for finite y. The equations of system (1) are satisfied almost everywhere in D Xy
Farthermore the inequalities

K, (U—wo=<Lu<<K;(U—u)o

U
e < 0 =7 i), | <

Uyy “uwyty T Wy
— Ky << —— <X — K3, l—-——————-———-————" - < K,
Uy

Ry uy
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1 U
‘u’uf(uuxuu — Usllyy) + -zfﬁf_ (uuyy —u?)| <Ko (U —u)s

1 U
— K (U —u)s< o (U, — Uglhyy)+ uyll/' (utbyy — u,A) < Kyyz (U —u)s

are satisfied, In the above inequalities ¢ = [—lnp (1 — u / U)I"s, K; and p are
certain positive constants, ) << u << 1.and X, > 0 depends on U, r and v,.

This theorem is the corollary of Theorem 1,

We note in conclusion that the stipulations and the input data of problem (1), (2)
formulated in Lemma 4 and Theorems 1 and 2 are somewhat less stringent than the lim-
itations imposed in [1], The analysis presented here has to a certain extent improved
the results obtained in [1] and made it possible to prove the theorem of existence of
solution of the Cauchy problem for the requirements with respect to external flow, as
specified in Theorems 1 and 2,

The author wishes to express his thanks to O, A, Oleinik, his science instructor, for
his help and guidance in this work,
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The formation of a boundary layer over a body which suddenly begins to move
in a stationary incompressible fluid is analyzed, Proof is given of the existence
and uniqueness under certain conditions of solution of the related boundary value
problem defined by the system of Prandtl’s equations in a certain time interval

0 < t < T and over the whole of the streamlined body, This problem was also
considered by Blasius [1] who had proposed to solve it by expanding the stream
function into an asymptotic series in powers of time, and had given the first two
terms of this expansion in their explicit form, A brief account of these results
and the mathematical formulation of the problem appear in [2, 3], The problem
of boundary layer development under conditions of gradual acceleration was



