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The system of boundary layer equations of unsteady axisymmetric flow of incom- 
pressible fluid in the presence of blowing or suction through the boundary surface 
of a body is considered. Proof is given of the existence and uniqueness of a time- 
periodic solution of such system in the neighborhood of the critical point (forced 
oscillations), when the external flow is periodic with respect to time and the fun- 
ctions defining the body shape and the blowing or suction conditions are known. 
This problem was considered in detail in [l] for specific initial conditions (as a 

whole dependent on t) , where, in particular, data on the stability of such flows 

are presented. 

Let us consider the system of equations 

u1 + uu, + uuy = - ph. + vuyy, pu = 0, (ruL + (r4, = 0 (1) 

fortheregion D {-xI(~(+ 00,0,(s<X,O~y<~} withboundary 
conditions 

u Ir=s = 0, U jy=a = 0, V IuEo = V,(t, Z), U +-> U (t, .C) for y -+ M (2) 

u(t + T, ,r’, Y) = u (t, .r, Y) 

where u and v are velocity components parallel and normal to the wall of the body ; 
U (t, 2) is the longitudinal component of the external flow velocity, with u (t, 0) = 
0, and U (t, X) > 0 for x > 0; -px = Ut + UU,, v is the viscosity coefficient 

(for density p 3 1); r (t, x) is the distance of point x on the body surface from the 
latter axis of symmetry; and r (t, 0) = 0 and r (t, 2) > 0 for x > 0. We assume 

that in the region n, U, > 0, rx > 0 and px i U < 0. Let U, r, p and va be 
a specified periodic functions with respect to t of period T. 

To analyze the problem (l), (2) we introduce new independent variables 

We then obtain for function w = uu i U in region Q { - OCI < z < + x , 0 < 
g < X, 0 < q < I} the equation 

vw’211’n~ - wz - 11Uq f- Aw, + Bw = 0 (4) 

with boundary and periodicity conditions 

w I*=1 = 0, (VW& - 2)@ t C) jn=o = 0 (5) 

w (7 + T, E, rl) = x7(% E, “1) 

where 
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A = (lJ2 - 1) C:, + (IJ - 1) $ , B = 11 ( I^,, + - u, -2 1 
The unknown function u (t, x, y) is defined by the equalities 

Y _(_A_ 11 (t, t, ?I) 
, II’ (t. s. 8) ’ ‘1= v(t,z) 
0 

and function u (t, X, y) is determined by the first equation of system (1) [l]. 

Let us assume that A. B, C and zjO and their derivatives with respect to t and 5 

are bounded. Using the method of straight lines [ 11, we shall prove on suitable assump- 

tions the existence and the uniqueness of the solution of problem (4), (5) and obtain, as 

the corolla$, the related theorems on the periodicity with respect to t of solutions of 

the input problem (I), (2). 

Let fml h (7) 3 f (mh,, kh,, 11) f or any function f (.t, T;, q), 11, and /l.s = const 
> 0. We substitute for Eq. (4) with conditions (5) the following system of differential 

m= l,..., N; II-== T/h,; k=O,I ,..., 1; 1 = [x/t~]; O<q<l 

-??I,0 l!J = 0, p. = 0, I_L~ = con& > 0, (A: > Ij, 7 = coml, 0 < 7 < 1 

(where h, is such that 1’ / br is an integer) with boundary conditions 

tLimJ (1) = 0, hm,k (w) 3 (v~“~“tQ” - $“w*~~ + CmSh’) jrl+ = 0 (7) 

and condition of periodicity 

&h’ (II) zz tuStk (11) (8) 

We denote by _IJj, Ej and a positive constants independent of ia, and h,. 
Lemma 1. The system ot differential equations (6) with conditions (7) and (8) has 

the solution ZO~Y~’ (7) (0 < m < I\;, 0 < k < l), which is continuous for 0 < 

7.~1 and has all derivatives for 0 .< 7 < 1. The estimate 

.\I, (1 - I]) < I(’ ?,l*k (I]) < _Us (1 ‘- I]) ; (9) 

r;-_ I’- I I1 11 (1 -- tl ) for lilz~ < .V, lzj < h,i = cY)nSt > 0. 11 = U.lllst, {l E (0, cl”) 

where pC is a certain constant defined by the input data of problem (l), (2), is valid 

for thi,; solution. 

Proof. We derive the solution of system (6) with conditions (7) and (8) as the limit 

of solution of system 

/,I, ,; (I(.) G ,U$ IL -1 l.,,,,; (u) = 0 for F _ 0 c l(l) 

,,1 z 1, 2, . , .\‘; it -= /I, 1) . . . I; e > II, (1 5 11 < I 

with conditions (7) and (8). The proof of Lemma 1 is to a great extent similar to that 

of Lemmas 3 and 7 in [l]. 

Let us examine functions 
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vs 14, al = Ill, (a - qfa (X,, a, itf& = co& > #). 

As shown in Cl], constants M,, a, M, and u” can be chosen so as to satisfy the follow- 
ing inequalities: 

L&, & (VI) > 0, km& (k-1) > 0% L&, h_ (Vz) < 0, km& (I-2) < 0 ($1) 

Note that M$, Ma, ct and p0 are independent of E ~ h, and $, 

Proof of the existence of solution of the problem defined by (IO), (7) and (8) is based 
on the Schauder theorem PJ]. Let S be a set of bounded vector functions 0 -= (O”, Ol.. . 
@) such that 

J’I (lih2, q) g fY (q) < I-2 (/iha, ?Qt k = 0, 1,. . d t 2; 1 = [X/h?] (W 

Let us examine the shift operator It which associates the vector function 8 to these 
vector functions, zuN = @+ 0, . _ . ,wN* i)l where &‘T iz = wRE* g for m = N = Tjht, and 

zurnX ’ is the solution of system (IO) with boundary conditions (7) and initial condition 

,O,h = 3” (U < Ii < 1) (13) 

The operator R according to Lemma 7 in [I]. is determinate on set S, Functions 
wN* ii fn) are continuous for 0 < n < f, have finite derivatives for 0 < YJ f 1, and for 
certain positive constants EL and E, independent of P . h, and k the estimate 

is valid, 
The operator R maps S into itself. ‘This statement is implied by the inequalities (11) 

and (12), since the estimate 

“I”* $L (n) < ,m,g (13) 6 ‘-TV” (TQ (14) 

is valid for the solution of the problem defined by (lo), (7) and (13) while Vy* Ir = 
Vp* ‘(i = 1, 2). Proof of the estimate (14) is obtained by the principle of maximum (see 

Lemma 3 in [,I]). 
The set RS is compact in S, since the first and second derivatives utrnV ’ (n) are bound- 

ed by a constant which depends on the input data of problem fl)? (2). e, 1, h, and on 
functions VI and V,. This follows directly from the first-order equations derived from 
system (IO) which are satisfied by t~>y, and from the estimate of WY, ’ for TV = o . The 
latter follows from the boundary condition (7) (we assume here that e and Iti are fixed, 
and the estimate r~:, ‘i depends on E and hi); the estimate is uniform with respect to 
s for ti --( n s< ( 1 - 6 ) where 6 > 0. The derivative u.~,~._ “‘, is defined by (lo), 

The continuity of operator Ii is implied by the equations and boundary conditions 
which are satisfied by various solutions of the problem (lo), (‘7). (13) corresponding to 
various O1 as well as by the estimates of these solutions and their derivatives, 

We thus conclude that the absolutely continuous shift operator R maps the bounded 
closed c0nve.x set S of the space of bounded functions into itself, IHence, by the Schau- 
der theorem f.Z] there exists a stationary point 0, == tc!#, 0,’ . . ,$J> which is the image 
of R, i.e., AOf, = O,, This equality implies that 0, f RS , hence fto,n is bounded. 
The sought periodic solution IL?** iL (11) of problem (lo), (7) is derived as the solution 
of system (IO) with boundary conditions (7) and the initial condition WI’* ” = O&‘. Differ- 
entiating Eqs. (10) with respect to 11 I we find that I$&; (~1 ,I : 1) and, consequently, 
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w’$,, are bounded. Repeating this process, we come to the conclusion that w”‘, k (7) 
are infinitely differentiable functions of -q, and that the derivatives a,,jwm, K (f = I, 2, . . ) 
are uniformly bounded with respect to a along the segment 0 < 11 d ( 1 -- 6J;where S 
is an arbitrary positive number. 

Let us now find the solution of problem (6) - (8). By the Arzela theorem it is possible 
to select from the set wr, h-4 of solutions of the problem (lo), (7), (8) a sequence w:* a 
which is uniformly convergent together with its derivatives along any segment 0 .< \ < 

( 1 - 8 ) for B,, - 0. Since M,, M,, a and I*’ have been assumed independent of s , h, 
and h,, the estimates 

M3 (1 - q) t?-akhz < UPJ (q) < M4 (1 - 9) 3 

which are uniform with respect to hr and h, ,are valid for functions wm3 fi . It follows 
from these inequalities wm9 (1) = 0 and wm, ’ (n) are continuous for 06 q < 1, and 
for rl < 1 ; wm* IE (q) satisfy system (6) and conditions (7) and (8). Lemma 1 is proved. 

Additional assumptions with respect to function u (t, ,z) make it possible to improve 
the lower accuracy limit of wrnvt (r$ . 

Lemma 2. Let (u, / ~)I~=, _- 0. Then for O< 7 ,( 1, 0 <lkh, < X and 
0 < /-t < p” (p” < 1 / jh) the estimate 

wm,k (7) > Al, (1 - “q) 5 (15) 

is valid for the solution of problem (6) - (8). 
Proof. Let V?‘” = Ms (1 - q) ~e-‘~~z, Then 

L m k (v,) = vrn’” , 3 
(I- &) - 

for n < I and for reasonably great c1 and reasonably small ill6 and P”, since U, > 0, 

I (rJJ) i r - U,~<cdl and ~-~\<~-2(O)-Ofor u-00; O<hz’<h?. Let hk,,(w)~h~ k 
(u:) / u?k 

I 
(O).‘We have 

provided MG is reasonably small. since C > C) 
Let US consider functions ymsk = (V~~k - J”gk) e-lskhz. We shall prove that yrnsk f 0. 

For ymsk we obtain the inequalities 

ym,k (1) = 0, yO.k = yNsk (171 

Weset ph),l for k>l and 8 = hl-1 with ht sufficiently small to make the 
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coefficient at ymsK in (16) nonpositive. Let M, K and qo be such that y”pK (qo) > 

ym” (rl), i.e., y”IK (qo) =p max ymBk (q). Let us assume that y”*IZ (qo) > 0. Since yolk = 

yNak, we can assume M >, 1 and Y”eK (qo) > Y”-@ (lo). Since [c”lk / u?*~V~*~ 

(O)>O. it follows from (17) that q. # 1 and q. # 0. Hence 0 <q. < 1 and the inequalities 
Yf ‘K @lo) = 0, yyiK (qo) < 0 are valid. 

Since the coefficient at Ymeo which is equal Y (We*’ + Vr*“) Vzi, is nonpositive, it 

fOllOWs from inequality (16) that K # 0 and yMsK (90) > y”IKql (?$I). From (16) we then 
obtain 

This inequality is, however, impossible, since the coefficient at YMIK by virtue of sel- 

ecting nonpositive pk, S and 4. Hence ym*’ (q) 6 0 and the estimate 

u?~~ (q) > Ma (1 - 1) aewzK”* > MS (I- 9) 0, (MS < MC=) 

is valid. Lemma 2 is proved. 
Let us determine wm*k for any integral m: ZU~~+*.~ = w**’ (0 <Q < iv - 1). In 

particular, w1.k = wN+k. Note that the periodicity T of the coefficients of system (I) 
and conditions (2) imply that 

LNP+q,k (w) = Lq,k tw> = 0, hNp+q.k tw) = &k (w) = 0 

We introduce the following notation: 

ga,k _ ,p,k-i 

r m,k = 2 
m,k mk 

p,k _ p-1,1 

hn t ,= %, 9 P 
mlk = 

hl 

Let us establish the uniform with respect to h, (i = 1,2) estimates for rmvk, zmvk 

and p”‘*g, and write the equations which satisfy these. Differentiating (6) with respect 
to r),for Zmpk we obtain 

i<m<N, O<k<l, Umvo=O, po=O, pi,>0 (k),i), O<r<i 

with conditions 

zm, k I 2% k = ZN. k (19) 

Subtracting from the equation for wrnvk in (6) that for wrnpi;-l and dividing the differ- 

ence by %a, we obtain 
- ($P’ k-1 + Yk-hi) x 

X 
rm9 k __ p k-l 

hs +A m,k,.;,k + B% krm,k + 

+ 
Wmt k + Wm, k-l 

(,m,k_1~2 [pm, k-l f(qUm' k-l+ pk_Ihz) P k-1 - Am* k-l~ml k-l - 

_ Bm’ k-lWm, k-l] ,.m, k _ 
p, k _ Um, k-1 

rl 
+ 

PI, 

ha 
- pk-1 rm, k 
hl-Y 1 + 2 
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+ & (A”‘, ’ _ A”’ k-1) Zm. k-l + .&_ (Brnv Ir _ Bm* k-1) Wm, k-1 = 0 

(20) 
f < ~1 <‘N, 1 < li<l, Urnto = 0, /Lo = 0, Elk > /.hk_1, 0 <r< 1 

From conditions (7) and (8) we similarly obtain 

rm, k (1) = 0, ym, k (r) = [w?’ ’ - lum,~~m~ k_l rm9 ’ - 
m, k 

YO 
_ 2,m’ k-l 

0 - 
h? II = 03 rot k = ,.Ns k 

1=0 
(21) 

Functions rmjo are undetermined (we can, however, assume that Wml-l = wm@ and, 

consequently, rmqO s 0). Similarly the analysis of equalities 

-J$ [L,, h (w) - Lm-1, I( (uJ)] = 0, & [Gn, k CzL’) - GI-1, k (w)] = 0 

yields 

+ l* 
m, k + p-1, k 

((0 m-l. k a 1 
Ipm-l, k + (r~m-ls k + pkh;) p-1, k _ Am-1s ‘p-L k - 

p-ll kWm-1, k] pm9 k _ q 
UT k _ p-1. k 

- 
hl 

rm-i, k + 

l, (A”, k _ Am-l9 k) p-1, k + & (p k _ gm-lTk) Wm-l, k = 0 1 (22) 
l,<m\<N, O<k<l, Urn*‘= 0, pO==o, t+>o (k>i), o<r<l 

with conditions 

P mt k (lj = 0, I’,, h’ (p, s 
[ 
y~~~k _ ‘“’ ’ 

U,m, tiwm -1, k 
pm, k _ 

m, k 
UO 

_ vm-1, Ii 
0 

m, k 

- 

ht 
+ ’ hl-;_y;-l’ k II = 0, PO. h’ = @‘. k 

a=0 (23) 

(Do7 k are determined, since UJ-~B k 5 UN-~, k ). We assume henceforth that (u,/ u) ]zao= 

0, U,, IE=~ = 0 and uot ]E+ = 0. From (22) and (23) we then find that p’“~ ’ must 
satisfy equations 

T,, 0 (pj 5% Y (Wrn, 0)s p;; O - p 
m, 0 

;zlP 
m-1. 0 

+A 
m, 0 m, 0 

Pii + 

-)- “m~~~m~l~o~~l’o [pm-l, 0 _ Am-l* op-l, 01 pm, 0 = 0 (24) 

and conditions 
(25) 

pm’ o (1) = 0, 1 m, o (p) zz [vpyso - Cm’ ’ Wm~ og-1.0 pm’ “1 In 
zs 

D = 0, pov o = $V. o 

Function pm,’ (q) G 0 satisfies Eqs. (‘24) and conditions (25). Let us consider the sol- 
ution wmqk of problem (6) - (8) in which pmyO 5 0. 

Lemma 3. Let no IE_o & 0. Then for 0 & q < 1, M, and n/Is, = COnSt > 
0 the estimate 
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is valid for zrn@ = u,.,,“‘~~ . 
Proof. Since pm,‘= 0 and wmVoare independent of m,Lemmas 4 and 5 in [I], from 

which follows the estimate (26) are valid for wrn9 o (11) = ~1~ (9) . Lemma 3 is proved. 
Lemma 4. Let 

7.~0 G M, vat > - E&r I CTTt t u I < Ed 

I (G I Vt 1 G Ed, U,, < E,& 1 (r,Ur-l - u,h ] < &oE (27) 

It is then possible to find such a positive X1, which depends on the input data of problem 
(l), (2), that for 0 & kh, 4 X, and 0 < mh, ,( T the estimates 

- *11ao & (UT” & - df 105 (W 

1 Wm~kWy;k ) < AI,,, wm~kwy;k < - ‘II,5 (31) 

where Mi are independent of h, and h2 are valid for the solution of problem (6) -(8). 
Proof. This is carried out by the method of induction with respect to k. For k = 0 

the inequalities (28) - (30) are valid and rmg o is undetermined (it will be shown in the 
proof that the value of rmS” is immaterial). 

Let ym.k = ~,~~m*k, Qylk = - illbd, tbFlkE: - Mr05, Ry*” = - M~;w~~~ and ~a*“‘= 

Mlt,khzw m,k. For proving the lemma it is sufficient to establish the validity of the fbllow- 

ing inequalities: 

1 P*k 1 < Yrn*k, @O 1 < ZrnPk < oy, FY’k < P m,k ,m,k 
<j’- 

In fact, if we select 21f11 > i%~lG:b~p, JI,,), .lIl:M, and 111,s > MIcJ~, , the estimates 

(28) - (30) are valid. Estimates (31) follow from estimates (9), (15), and (28) - (30) and 

Eqs. (6). 
The proof of Lemma 4 follows very closely that of Lemma 9 in [l]. The important 

difference is in that here the induction is only with respect to k. This imposes a very 
strict sequence for proving the estimates. First we estimate rmy K, then z”‘~ ’ and, fin- 

ally, pm’ &. Furthermore, it should be noted that Eq. (22) can no longer be considered 

as linear, since by the definition of induction pm-r, ’ has no estimate and (uJ”‘~ ” f 

W 
m-_l,K) tWm-l, fi)-zpm-1, Kpm, h' 

IS a nonlinear term. In the proof of the estimate for pm’ ’ 
we specifically use unequal steps with respect to z and z, i.e., h, # h,. 

Let Rin, k be the uniform part of operator R,. k. From (20) we have 

II;,, (,.) + + (A.lm,k _ 2.1m,“-i) ZWr-i + & (BmJ _ ,+k-1) wmJ-i = o 

Note that the coefficient at r7’1,11 vanishes when k = 1 . Let us prove that for 0 6; 
11 < i 

l{;“,i; (yr) z]{&,k (9’) + 4 ,( 1Wh‘ __ pJ-1) ;T;-l .I. (p?” ._ ]j”‘.‘“‘_l) ,,.m,f+ / < 0 

We select A1r6(.112, JI,! .lI,,) and x1 (.I/:, .llrD, .lI i6, .111~) so as to satisfy for iih2 5 f’ 
and sufficiently small IL: the following ine.qualities: 



440 D.A.SilWV 

(32) 

[ hfjs (k - 1) hz + (qUm*k-l + ~~_~k;) - Bmik-l] wm*‘-’ < l/zMlo (Cmek + $Y_~pk) (1 -q) 6 

These inequalities are possible, as can be seen from the estimates UmSk Q N&h? and 
~~~~ 1 Q Nzkkz. It can be shown by the calculation of Rk,k (Y) that the required inequ- 

aliq Rk,k (Y)< 0 is the consequence of (32). 

Denoting by rh,k the uniform part of operator ‘r’m,k, we obtain 

WC 

T&,k(Y + - v” + 
p,k _ ,yd-1 

h2wm- (0) 
d 

cm.k p,k 
vrl”---- I aup I C,I 

,W ,m , k-l + SUP I VOX I + 
wm,k-l <o 

9=0 

provided that Ml6 is sufficiently great and kh3 < 6 (Es, M2). Let us examine functions 

9, 
-0 = f r.m.k_ ym.k, It follows from the immediately preceding inequalities and from 

Eqs. (20) and (21) that 

@,,,k ((II,) > O* -&,,l, (4,) > O, qz*” (I) = 0 

o.k _ N,k 
Q* -Q& ’ Qt c 

m,k-1 0 

Using these relationships and repeating the reasoning of Lemma 2, we conclude that 

Qk Q 0 , hence the estimate - YmSk < rrnsk <F,k is valid for kha g F1 = min (S, 9). 
-The estimate for zmtK is derived in exactly the same manner as that for zk in Lemma 

6 in Cl]. Omitting the proof, we would only mention that M9 depends on M,,J and M,, 

on the input data of the problem (l), (2) and constants MZ and M, (it is important that 
M,, is independent of h!lG); here we also impose the condition of smallness of X1 : 
khz < 2 (Mm, MIG, ill?, E,). 

We pass to the estimate of pm,k. It can be verified that for lch&x2(&, Mz) and suffi- 

ciently large M17 (MU* M2, MS) the inequalities T, k (PI) > 0 (0 < q < 1) and I’m,k (FI) > 

0 are valid. By calculating Tmllk (Fz) and 1‘,,,iF2) it can be readily shown that 
T m,k (F’2)<0 (O,<V<i) and rm,k (F2) < O,when kkz < min {x2, x4 (MIX, MIS, Mlo)} and 
MIS (nrlG$ EG, Es, ECI) have been made sufficiently great and ILI, ha < hc. This is, in fact, 
possible provided that the following inequalities are satisfied: 

I ,m-l,k 
+ 
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@f,&h* + Ml63 (qUm-l*k + p,hZ) - Em-lsk) wm-lBk Q 

< l/#-kzm-l~k < ‘/*M1o (Cm-l*k + qu;-l*k) (1 -9) a 

These inequalities follow from the conditions of this lemma, smoothness of coefficients 
and the independence of Ml6 of Mrs. 

Let us examine the remainders Sy’” = FyPk - pm*’ and ,_cTsk = pmpk - Prlk. By def- 

inition of induction sm*k-l < 0 (i = 1,~). For Sm,k we have , 
Wm.k m-l,k 

l+hl fW F?tk 
1 

+ 
(W m-1.k 2 1 ’ 

Bm,k = Bmvk 
wm,k 

f 

+ ,m-1,k 

1 (,m-i,k )2 
[qWi + (qum-lpk _i_ pkh;) prn-lsk - 

_ Am-i, kZm-1, k _ ~m-iskWm-l, k 
I 

y,ym9k _ 

c”.k 

Jri 
S?,k 

tttm,kWm-l,k J 
II 77=D 

> 0, sy (2) = 0, sy = sy 

(33) 

(31) 

Let us prove that for certain relationships between the steps h, and hj the coefficient 
at Sj”*” in the inequality (33) can be made negative. Using the principle of maximum 

(see Lemma Z), from (33) and (34) we obtain ,Sy8” < 0 (1 = 1, 2) and, consequently, 
the estimates Frlk < pmsk < pm*” if kha < X1 = 

ently small. This will serve to p:ove Lemma 4. 

min (zi) and h, and h2 are suffici- 

Let us specify PLk. > 1 with k > 1 and 
hz so small that 

Bm,” _ 
1 

( 

Urn,,, 
rl i++ 4 

> 
(35) 

L 

which is possible, since y < 1 and the estimates for rm-l*k and zrn-lYk have been al- 

ready proved. Furthermore, 

wm,k _ wm-i,k Pk - ‘IA 
m-l,k 

lomvk + lum-i,k 2 1 

m-1.k 2 
pk - ‘12 

(w ) 
p 

hi-’ ’ 
i 

u,m-i,h: --- 
hl hl-Y <o (36) 

2 
if uk > ‘12 -+ (1 + M:/Ms)~~ and hl >, hl-‘. Lemma 4 is proved. 

Theorem 1. Let the propositions of Lemma 4 be satisfied by the T-periodic 
functions r, U and v,, . Then there exists in QX, (0 < ‘c & T, 0 < E < X,, 
0 G q<l)(X,. 1s a certain number dependent on u, r and n,,) a solution of problem 
(4) (5) which has the following properties: 10 (7, E, q) is continuous in Qx,, A/I, 

(I- $0 G w < M, (1 - V)O, w,is continuous with respect to 9 for q < 1, 
-M,o < w,, & -M1,p, WE, w, and ww,,, are bounded in Qzx, and 

I u’s I < Mn (1 - do, 

wwm < -Mm --Ml, (1 - $0 S w, ,( M& (1 - rl)o. 
Function w satisfies Eq. (4) almost everywhere, and for 0 < g < X, conditions (5) 
are satisfied. The solution of problem (4) (5) which has these properties is unique in 

Qzx, C Qx,. 
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The Proof of existence follows the reasoning of Theorems I and 11 in [I]. We shall 
prove the uniqueness of this solution of problem (4), (5). Let u’r and WL be two soluti-. 

ons of this problem and u+ = wr -- WZ. For zu* we obtain 

VW -c-..-..- W* 
*a (38) 

w1w.L 3l=Cl 
= 0, *u* Iliz = 0, w* I_=@ = w* Is+. 

Multiplying Eq. (37) by I.+@ and integrating with respect to 8,, {a = COIM > (% 

we transform certain terms of this equaliv by integration by parts and obtain 

(39) 

We have used here the conditions (33) and the condition I: IF-s L- 0. We select a from 

the inequality 1 r,Ur-l - 11, 1 < aU and chose XZ so small that 

The left-hand part of equality (39) represents then the sum of integrals of positive func- 
tions, which implies that each of these integrals is equal zero. Since in the integral 

taken over region Q,~ the coefficient at Undo is negative, u** = 0 almost everywhere. 

The continuity of W* in 51, implies that u.* 5 0 and ~‘1 E WZ. Theorem 1 is proved. 
We can easily show that Qx: = Qx,. 

Theorem 2. bet U (t, z) = az $ b (t, CL).?? with a = coust > 0 and B = 
b (t, z) have bounded second-order derivatives, co ,( x1x, ~‘a~ > --h’$, r, &=s > 

0, 1 (r,Ursl - U,), 1 < flax, and b, u. and r are periodic functions with resp- 

ect to t of period T. There exists then a solution U, u of the problem (l), (2) which 

is unique in D_xz (0 < t s$ T, 0 < 5 < X,, 0 < y < w} and has the following 
properties: u / U and Uy / &r are bounded and continuous in D-y,, u > 0 for y > 0 
and 5 > 0; u + U for y--f 00, 11 / s=-0 = 0, it /T,=O = 0, ay / U > 0 for 
y > 0 and uy I U -+ 0 for y -+ co; uyr urr uUY, ut and u!, are bounded and con- 
tinuous with respect to y; lcyy / uy and v are continuous with respect to y and bounded 

for finite y, v 1 v=,, = u. (t, 5) and uyyt, is bounded in Dsz, uYr and u Ut are bound- 
ed for finite y. The equations of system (1) are satisfied almost everywhere in Dx2. 
Furthermore the inequalities 
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are satisfied. In the above inequalities o = [-ln p (1 - u / U)l’/t, Ki and lt are 

certain positive constants, 0 < ~.t < 1 .and X, > 0 depends on u, r and vo. 

This theorem is the corollary of Theorem 1. 
We note in conclusion that the stipulations and the input data of problem (l), (2) 

formulated in Lemma 4 and Theorems 1 and 2 are somewhat less stringent than the lim- 
itations imposed in [l]. The analysis presented here has to a certain extent improved 
the results obtained in [l] and made it possible to prove the theorem of existence of 
solution of the Cauchy problem for the requirements with respect to external flow, as 
specified in Theorems 1 and 2. 

The author wishes to express his thanks to 0. A, Oleinik, his science instructor, for 

his help and guidance in this work. 
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The formation of a boundary layer over a body which suddenly begins to move 

in a stationary incompressible fluid is analyzed. Proof is given of the existence 

and uniqueness under certain conditions of solution of the related boundary value 
problem defined by the system of Prandtl’s equations in a certain time interval 
0 < t < T and over the whole of the streamlined body. This problem was also 
considered by Blasius [1] who had proposed to solve it by expanding the stream 
function into an asymptotic series in powers of time, and had given the first two 
terms of this expansion in their explicit form. A brief account of these results 

and the mathematical formulation of the problem appear in c2. 31. The problem 
of boundary layer development under conditions of gradual acceleration was 


